
108

Supplementary Material for: Parallelization of Dynamic
Languages: Synchronizing Built-in Collections

BENOIT DALOZE, Johannes Kepler University Linz, Austria

ARIE TAL, Technion, Israel
STEFAN MARR, University of Kent, United Kingdom

HANSPETER MÖSSENBÖCK, Johannes Kepler University Linz, Austria

EREZ PETRANK, Technion, Israel

This is supplementary material for the paper Parallelization of Dynamic Languages: Synchronizing Built-in
Collections by Daloze et al. [2018].

ACM Reference Format:
Benoit Daloze, Arie Tal, Stefan Marr, Hanspeter Mössenböck, and Erez Petrank. 2018. Supplementary Material

for: Parallelization of Dynamic Languages: Synchronizing Built-in Collections. Proc. ACM Program. Lang. 2,
OOPSLA, Article 108 (November 2018), 6 pages. https://doi.org/10.1145/3276478

1 REASONING ABOUT CORRECTNESS FOR THE LIGHTWEIGHT LAYOUT LOCK
Similarly to the Layout Lock [Cohen et al. 2017], the Lightweight Layout Lock must satisfy the

following properties: (a) layout change operations are mutually exclusive, (b) write operations

are not concurrent with a layout change operation, and (c) optimistic read operations detect a

concurrent layout change operation and fail, allowing for recovery.

In this section, we sketch the correctness of the Lightweight Layout Lock protocol by describing

invariants, which correspond to the above correctness properties. We argue that if these invariants

hold, the lock is providing the necessary synchronization for concurrent strategies.

The correctness of the Lightweight Layout Lock invariants depends on a baseLock that correctly

satisfies shared vs. exclusive locking invariants, such as a Reader-Writer Lock [Hillebrand and

Leinenbach 2009].

The Lightweight Layout Lock does not support nesting API calls, nor does it support upgrading

(i.e. atomically turning a read operation into a write operation, or a write operation into a layout

change operation). Similar to other locks, an operation is comprised of the following steps: (a) a

prologue, usually an API call (a call to a start method in the case of the Lightweight Layout Lock),

(b) a body, the user code that performs the actions that are synchronized by the lock, and finally

(c) an epilogue, a symmetric API to the prologue that performs synchronization actions related to

finishing the operation (a call to a finish method in the case of the Lightweight Layout Lock).

A threadState is an AtomicInteger that associates a thread and a Lightweight Layout Lock

instance. The thread states associated with a specific lock instance are maintained in that lock’s

threadStates list. The value of a threadState is a combination of two bits: The LC bit and WR bit,

Authors’ addresses: Benoit Daloze, SSW, Johannes Kepler University Linz, Austria, benoit.daloze@jku.at; Arie Tal, Computer

Science, Technion, Israel, arietal@cs.technion.ac.il; Stefan Marr, School of Computing, University of Kent, United Kingdom,

s.marr@kent.ac.uk; Hanspeter Mössenböck, SSW, Johannes Kepler University Linz, Austria, moessenboeck@ssw.jku.at;

Erez Petrank, Computer Science, Technion, Israel, erez@cs.technion.ac.il.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART108

https://doi.org/10.1145/3276478

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 108. Publication date: November 2018.

https://doi.org/10.1145/3276478
https://doi.org/10.1145/3276478


108:2 Benoit Daloze, Arie Tal, Stefan Marr, Hanspeter Mössenböck, and Erez Petrank

Supp. Figure 1. This diagram shows all the state transitions of a threadState, as they are triggered by the
different API calls of the Lightweight Layout Lock. The dashed arrows indicate the reader and writer slow
paths (i.e. a call to slowSet() in Listing 2).

representing four states: 0 (Inactive), WR (Writing), LC (Layout Change), and LC + WR (Writing with
Layout Change Pending). The threadState value is modified by the various API calls, as shown in

Supp. Figure 1. Each transition of the threadState is performed atomically either by actions of the

owning thread or by a different thread that starts a layout change.

Invariant 1. For some threadState of thread T and lock lll, if T clears the LC bit, then
• T called either finishRead() or startWrite().
• the rescan flag was set to true prior to clearing of the LC bit.
• clearing of the LC bit was performed while the baseLock was held in shared mode.

The slowSet() method is used to set rescan to true and clear the LC bit. It is not invoked directly

by user code, but rather as part of the read operation epilogue and the write operation prologue. It is

the only method provided by the Lightweight Layout Lock that can clear the LC bit. The slowSet()

method locks the baseLock in shared mode prior to modifying rescan and the threadState, and

releases the baseLock when done. Note that although startWrite() and finishWrite() update the

threadState directly (at lines 22 and 30 in Listing 2, respectively), they only modify the WR bit.

Invariant 2. For a given Lightweight Layout Lock instance lll ,

lll.rescan = false =⇒ ∀ts ∈ lll.threadStates, ts = LC (Layout Change)

When the Lightweight Layout Lock is initialized, the rescan flag is set to false (at line 4 in

Listing 2) and there are no threads registered with the lock (i.e. threadStates = {}). So this invariant

holds when creating the lock since there are no threadStates.

When a new threadState is registered with the lock, it is first set to LC (Layout Change, at line
68), thus thread registration preserves this invariant.

When a reader calls finishRead() and detects (at line 13) that the threadState is not 0 (not

Inactive), it calls slowSet() (at line 16) to set the threadState to 0 (Inactive). When a writer calls

startWrite() and the CAS (at line 22) fails (i.e. the threadState value is LC (Layout Change)), it
calls slowSet() (at line 25) to set the threadState to WR (Writing). By Invariant 1, slowSet() sets

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 108. Publication date: November 2018.



Supplementary Material for: Parallelization of Dynamic Languages: Synchronizing Built-in
Collections 108:3

rescan to true prior to modifying the threadState. Therefore, in the only two cases that clear the

LC bit, Invariant 2 is maintained.

The rescan flag can only be reset by startLayoutChange() when it detects (at line 46) that the

rescan flag is true. It then scans all the registered threadStates and either verifies that they are

already equal to LC (Layout Change), or turns on the LC bit, thus transitioning the threadState into

either LC (Layout Change) or LC+ WR (Writing with Layout Change Pending) (cf. Supp. Figure 1). If the
thread that owns the threadState is concurrently performing a write operation, i.e. threadState

equals LC+ WR (Writing with Layout Change Pending), startLayoutChange() will busy-wait until the
the thread calls finishWrite() and clears the WR bit.

After all threadStates have been set to LC (Layout Change), startLayoutChange() sets rescan to
false. The scanning is performed while the baseLock is held in exclusive mode, and by Invariant 1,

the LC bit is only cleared while holding the baseLock in shared mode (by slowSet()), thus clearing

of the LC flag and setting the LC flag are mutually exclusive. The LC bits can only be set and the

rescan flag can only be reset in startLayoutChange(). Therefore, when startLayoutChange() sets

rescan to false, all registered threadStates must equal LC (Layout Change), satisfying Invariant 2.

Invariant 3. For a given Lightweight Layout Lock instance lll ,

∃ts ∈ lll.threadStates, ts , LC (Layout Change) =⇒ lll.rescan = true

This is trivially true by a contraposition of Invariant 2.

Invariant 4. The body of a write operation and the body of a layout change operations are mutually
exclusive.

For this invariant, we need to look at the two cases of a write operation: the fast path and the slow

path. The write operation fast path begins by a successful CAS of the threadState from 0 (Inactive)
to WR (Writing). If a layout change prologue runs concurrently, then by Invariant 3, the rescan flag

must be true, and thus it loops over the registered threadStates and tries to set them to LC (Layout
Change). However, since the CAS of startWrite succeeded for threadState, then the comparison

at line 49 fails for that same threadState (either before or after the CAS), thus the value LC is

atomically added to the threadState at line 51 resulting in LC + WR (Writing with Layout Change
Pending). startLayoutChange() will then busy-wait until the thread calls finishWrite() and clears

the WR bit, letting the threadState become LC (Layout Change) and releasing the busy-wait loop.

Thus the layout change operation body cannot start until all write operations fast paths completed.

The write operation slow path begins by a failing CAS of the threadState from 0 (Inactive)
to WR (Writing). The slow path proceeds by calling slowSet() with the value WR (Writing), which
requires locking the baseLock in shared mode. However, since a layout change prologue begins by

locking the baseLock in exclusive mode (startLayoutChange() at line 45), and releases the lock only

after the layout change operation completed (at line 63), the write operation is suspended until the

layout change operation is completed. Thus a write operation body cannot start before a layout

change body completes.

Since startWrite() always sets the WR bit (either via a successful CAS or slowSet()), finishWrite()

is the only operation clearing the WR bit, and startLayoutChange() waits until the WR bit is removed,

the layout change operation body cannot start until all write operation bodies completed.

Invariant 5. During a layout change operation body

• baseLock is held in exclusive mode.
• rescan is false.
• all registered threadStates equal LC (Layout Change).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 108. Publication date: November 2018.



108:4 Benoit Daloze, Arie Tal, Stefan Marr, Hanspeter Mössenböck, and Erez Petrank

The layout change prologue in startLayoutChange() begins by acquiring the baseLock in exclusive

mode. The lock is released at finishLayoutChange(), thus it is held in exclusive mode during the

layout change operation. When startLayoutChange() completes, rescan must equal false, since

startLayoutChange() resets the rescan flag, and the flag can only be set by slowSet()which requires

holding the baseLock in shared mode. However, the baseLock is held in exclusive mode during

a layout change operation, thus rescan remains false at least until the end of the layout change

operation. By Invariant 2 it is implied that all registered threadStates equal LC (Layout Change)
when rescan is false.

Invariant 6. For a given lock instance lll and a thread T, a call to lll.finishRead() by T returns
false if a call to lll.startLayoutChange() completed since the previous call by T to lll.finishRead() or
to lll.startWrite().

In other words, a read operation is made aware of a concurrent or previous layout change at

finishRead(), and returns false to initiate a recovery (i.e. restart of the read operation).

By Invariant 5, all threadStates are set to LC (Layout Change) when startLayoutChange() com-

pletes and the baseLock is held in exclusive mode. Therefore, if startLayoutChange() completed

since the previous call by T to finishRead() or startWrite(), then a subsequent call by T to

finishRead() must go through the slow path (i.e. call slowSet()) since threadState equals LC (Lay-
out Change). After slowSet(), finishRead() will return false (at line 17).

Conclusion. These invariants ensure that writing and layout changes are mutually exclusive, and

that reading of a value after a layout change started is aware of the layout change and can perform

the needed recovery. Thus, we argue that the Lightweight Layout Lock provides the necessary

synchronization to ensure correctness of concurrent strategies.

2 SAFE PUBLICATION OF SHARED COLLECTIONS
An interesting semantic example arises when sharing a newly-created collection, and reading its

contents from another thread. We discuss this example here, because it needs low-level imple-

mentation details to be explained. In our implementation, it is guaranteed that the other thread

will observe values at least as recent as set just before sharing the collection. In other words, safe

publication [Shipilëv 2014] is guaranteed for newly-created collections shared to other threads.

Supp. Table 1 illustrates an example where safe publication ensures the same outcome as a global

lock.

Supp. Table 1. An example illustrating safe publication.

Example GIL Goal Unsafe

7 Initial: array = [1]

array = [2] print array[0]

1

2

1

2

1

2

0

Unsafe has the additional outcome 0, because it does not guarantee safe publication and as a

result might read the element before it is initialized to 2. In Java, memory is guaranteed to be

zero-initialized for allocations, so only zero values can be observed (including null for an Object[]).

We consider 0 an out-of-thin-air value as it is never written by the program. The program only sets

the first array element to 1 and 2, but never to 0. Therefore, we want to prevent this outcome.

Our implementation prevents observing 0 by having safe publication semantics for shared

objects and collections. This is guaranteed by the process of sharing an object or collection, which

involves having a memory barrier between marking the object or collection as shared and the

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 108. Publication date: November 2018.



Supplementary Material for: Parallelization of Dynamic Languages: Synchronizing Built-in
Collections 108:5

// assuming array is a variable shared between threads,
// the Ruby code array = [2] becomes:

RubyArray tmp = new RubyArray();
tmp.storage = new int[] { 2 };

tmp.shared = true; // mark as shared
Unsafe.storeFence(); // or just a StoreStore barrier
array = tmp; // publish the array to other threads

Supp. Figure 2. Pseudo-code illustrating the implementation of the write barrier sharing a collection.

actual assignment making the object or collection reachable from other threads. This process is

detailed in Supp. Figure 2. Daloze et al. detail the write barrier but do not mention the memory

barrier, which was an omission in that paper. The barrier is also required to ensure other threads

correctly see this object or collection as shared.

3 RAW DATA TABLE FOR FIGURE 5

Supp. Table 2. Raw data table for Figure 5, showing the throughput relative to Local with 1 and 44 threads,
as well as the scalability with 44 threads normalized to the 1-thread performance of the configuration.

Benchmark 100% reads 90% reads, 10% writes 50% reads, 50% writes

Throughput Scaling Throughput Scaling Throughput Scaling

Threads 1 44 44 1 44 44 1 44 44

Local 1.000 1.000 45.1 1.000 1.000 39.2 1.000 1.000 42.4

SharedFixedStorage 1.030 0.997 43.7 1.036 1.079 40.8 0.997 0.897 38.1

VolatileFixedStorage 0.351 0.330 42.4 0.255 0.300 46.1 0.137 0.154 47.6

LightweightLayoutLock 0.259 0.247 43.0 0.162 0.181 43.9 0.079 0.081 43.7

LayoutLock 0.230 0.223 43.6 0.164 0.185 44.4 0.078 0.080 43.7

StampedLock 0.189 0.181 43.4 0.136 0.001 0.4 0.062 0.000 0.1

ReentrantLock 0.045 0.001 0.9 0.038 0.001 0.9 0.039 0.001 0.9

Figure 5 shows how each configuration scales from 1 to 44 threads but it is hard to observe

some data points due to overlapping lines. Therefore we provide the most relevant data in Supp.

Table 2. As the table shows, the throughput of ReentrantLock is very low even on a single thread.

StampedLock does not scale when there are concurrent writes, and is even significantly slower on

44 threads than on 1 thread. Other locks scale well on these 3 benchmarks, but the throughput of

Local and SharedFixedStorage is many times faster than other configurations.

REFERENCES
Nachshon Cohen, Arie Tal, and Erez Petrank. 2017. Layout Lock: A Scalable Locking Paradigm for Concurrent Data Layout

Modifications. In Proceedings of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’17). ACM, 17–29. https://doi.org/10.1145/3018743.3018753

Benoit Daloze, Stefan Marr, Daniele Bonetta, and Hanspeter Mössenböck. 2016. Efficient and Thread-Safe Objects for

Dynamically-Typed Languages. In Proceedings of the 2016 ACM International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA ’16). ACM, 642–659. https://doi.org/10.1145/2983990.2984001

Benoit Daloze, Arie Tal, Stefan Marr, Hanspeter Mössenböck, and Erez Petrank. 2018. Parallelization of Dynamic Lan-

guages: Synchronizing Built-in Collections. In Proceedings of the 2018 ACM International Conference on Object Oriented
Programming Systems Languages & Applications (OOPSLA’18). https://doi.org/10.1145/3276478

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 108. Publication date: November 2018.

https://doi.org/10.1145/3018743.3018753
https://doi.org/10.1145/2983990.2984001
https://doi.org/10.1145/3276478


108:6 Benoit Daloze, Arie Tal, Stefan Marr, Hanspeter Mössenböck, and Erez Petrank

Mark A. Hillebrand and Dirk C. Leinenbach. 2009. Formal Verification of a Reader-Writer Lock Implementation in C.

Electronic Notes in Theoretical Computer Science 254 (2009), 123–141.
Aleksey Shipilëv. 2014. Safe Publication and Safe Initialization in Java. https://shipilev.net/blog/2014/

safe-public-construction/

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 108. Publication date: November 2018.

https://shipilev.net/blog/2014/safe-public-construction/
https://shipilev.net/blog/2014/safe-public-construction/

	Abstract
	1 Reasoning About Correctness for the Lightweight Layout Lock
	2 Safe Publication of Shared Collections
	3 Raw Data Table for Figure 5
	References

