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Motivation: Multi-Core Processors

I Single-core performance no longer improves as it used to.

I The main way to achieve higher CPU performance on a single
machine is to use multi-core processors.
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The Multi-Core Era

Figure: SPECint® results over the years. Source:
https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/
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The Multi-Core Era

Figure: SPECint® results until April 2018. Source: https:

//preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/#IDComment1061418665
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Problem Statement

We are in the multi-core era, but:
I Dynamically-typed languages have poor support for parallel

execution (e.g.: Ruby, Python, JavaScript, . . . )

I State-of-the-art implementations either sequentialize execution
or lack basic thread-safety, exposing low-level data races of the
VM to the user

I The biggest reason (my interpretation) is their representation
of objects and built-in collections are not thread-safe
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Does performance matter in these languages?

I Many server applications written in Ruby, Python, JavaScript,
etc

I They are run in production, and the cost is linked to how
many resources are used (servers, memory, processing power)

6



Dynamic Language Implementations

I Global Lock: CRuby, CPython, PyPy, V8, . . .
⇒ No shared-memory parallelism in a single process

I Fine-grained synchronization: Jython, PyPy-STM, Ruby-HTM
⇒ Significant overhead on single-threaded performance
⇒ Sequentialize all writes to the same object/collection

I Unsafe: JRuby, Rubinius, Nashorn
⇒ Break basic thread-safety like reading/writing to an object
or operations on built-in arrays/dictionaries
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Appending concurrently

array = []

# Create 100 threads
100.times.map {

Thread.new {
# Append 1000 integers to the array
1000.times { |i|

array << i
}

}
}.each { |thread| thread.join }

puts array.size
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Appending concurrently

CRuby, the reference implementation with a Global Lock:
ruby append.rb
100000

JRuby, on the JVM with parallel threads:
jruby append.rb
64324

# or
ConcurrencyError: Detected invalid array contents due to

unsynchronized modifications with concurrent users
<< at org/jruby/RubyArray.java:1256

block at append.rb:8
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A workaround

array = []
mutex = Mutex.new

100.times.map {
Thread.new {

1000.times { |i|
# Add user-level synchonization
mutex.synchronize {

array << i
}

}
}

}.each { |thread| thread.join }

puts array.size

10



Summary

State-of-the-art implementations either
I sequentialize important part of the execution or

I violate basic thread-safety guarantees

We need thread-safe and efficient data representations which:
I provide thread-safety guarantees

I have no overhead on single-threaded execution

I enable parallel workloads to scale
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Challenges

I How to provide thread-safety guarantees with no
single-threaded overhead?

I How to provide efficent and thread-safe objects to which fields
can be added or removed dynamically?

I How to provide efficent, thread-safe and scalable versatile
collections?
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Scientific Contributions

I A method to automatically detect which objects and
collections to synchronize based on reachability, with the only
overhead being a write barrier on shared objects and collections

I A thread-safe object model for dynamic languages,
synchronizing only on shared objects writes

I A method to gradually synchronize built-in collections in
dynamic languages, achieving scalable and thread-safe access
to these collections

I Guest-Language Safepoints, a synchronization mechanism that
enables interrupting any thread to execute arbitrary code.
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Supporting Publications

I A Powerful Synchronization Mechanism
Techniques and Applications for Guest-Language Safepoints.
B. Daloze, C. Seaton, D. Bonetta, H. Mössenböck,
ICOOOLPS 2015.

I A Thread-Safe Object Model
Efficient and Thread-Safe Objects for Dynamically-Typed
Languages. B. Daloze, S. Marr, D. Bonetta, H. Mössenböck,
OOPSLA 2016.

I Thread-Safe and Scalable Built-in Collections
Parallelization of Dynamic Languages: Synchronizing Built-in
Collections. B. Daloze, A. Tal, S. Marr, H. Mössenböck, E.
Petrank, OOPSLA 2018.
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Additional Publications

I Cross-Language Compiler Benchmarking: Are We Fast Yet?
S. Marr, B. Daloze, H. Mössenböck, DLS 2016.

I Few Versatile vs. Many Specialized Collections: How to
Design a Collection Library for Exploratory Programming?
S. Marr, B. Daloze, PX/18.

I Specializing Ropes for Ruby
K. Menard, C. Seaton, B. Daloze, ManLang’18.
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Outline

Single-Threaded Performance and Thread-Safe Objects

Thread-Safe and Scalable Collections

Conclusion
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Idea: Distinguishing Local and Shared

Idea: Only synchronize objects which need it:

I Objects reachable by only 1 thread need no synchronization

I Objects reachable by multiple threads need synchronization
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Local and Shared Objects: Reachability
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Local and Shared Objects: Reachability
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Local and Shared Objects: Reachability
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Tracking the set of shared objects

I All globally-reachable objects are shared when a second thread
is created

I Write to shared object =⇒ share value, transitively

# Share 1 Array, 1 Object, 1 Hash and 1 String
shared_obj.field = [Object.new, { "a" => 1 }]
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No Overhead?

Pseudo code to write a value to a field of an object (obj.x = 42):

void write(Object object, String field, Object value) {
if (isShared(object)) {

// use synchronization
} else {

// direct access
}

}
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The Truffle Object Storage Model

An Object Storage Model for the Truffle Language Implementation Framework
A. Wöß, C. Wirth, D. Bonetta, C. Seaton, C. Humer & H. Mössenböck, 2014. 24
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Updating an existing field with Shapes

Updating the value of an existing field of an object (obj.x = 42):

void write(Object object, String field, Object value) {
if (object.shape == CACHED_SHAPE) {

object[CACHED_OFFSET] = value;
} else {

transferToInterpreterAndInvalidate(); // deoptimize
CACHED_SHAPE = object.shape;
CACHED_OFFSET = CACHED_SHAPE.getOffset(field);
write(object, field, value);

}
}
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Tracking Sharing in the Shape

Efficient and Thread-Safe Objects for Dynamically-Typed Languages
B. Daloze, S. Marr, D. Bonetta, H. Mössenböck, OOPSLA 2016.
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Tracking Sharing in the Shape

Shapes are checked for every field access and method call
⇒ No cost to know if an object is shared
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Updating an existing field with Shapes

Updating the value of an existing field of an object (obj.x = 42):

void write(Object object, String field, Object value) {
if (object.shape == CACHED_SHAPE) {

if (SHARED_SHAPE) {
// use synchronization

} else {
object[CACHED_OFFSET] = value;

}
} else {

transferToInterpreterAndInvalidate(); // deoptimize
CACHED_SHAPE = object.shape;
CACHED_OFFSET = CACHED_SHAPE.getOffset(field);
SHARED_SHAPE = CACHED_SHAPE.isSharedShape();

}
}
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Single-Threaded Performance for Objects

Peak performance, normalized to Unsafe, lower is better
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Extending Sharing to Collections

I We need to synchronize on collections too, e.g., to avoid
append races

I Collections are objects, they can track sharing in the Shape too

I Shared collections use a write barrier when adding an element
to the collection
shared_array[3] = Object.new
shared_hash["foo"] = "bar"

I Collections can change their representation when shared
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Single-Threaded Performance for Collections

Peak performance, normalized to TruffleRuby, lower is better
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Thread-Safe and Scalable Collections

Single-Threaded Performance and Thread-Safe Objects

Thread-Safe and Scalable Collections

Conclusion
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Focus on Built-in Collections

I Built-in collections are the most used (array/list, map, set)

I Built-in collections are thread-safe with a global lock
⇒ we want to preserve this thread-safety

I User-defined collections are unknown to language
implementations, so they cannot guarantee thread-safety
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Ruby built-in collections

I Array (a stack, a queue, a deque, set-like operations)

I Hash (compare keys by #hash + #eql? or by identity,
maintains insertion order)

That’s all!
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Array storage strategies

empty

int[] long[] Object[] double[]

store int store double

store long store Object store Object

store Object

class RubyArray {
// null, int[], long[],
// double[] or Object[]
Object storage;

}

storage:
array = [] # empty
array << 1 # int[]
array << 2**42 # long[]
array << "foo" # Object[]

Storage Strategies for Collections in Dynamically Typed Languages
C.F. Bolz, L. Diekmann & L. Tratt, OOPSLA 2013.
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Concurrent Array Strategies
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SharedFixedStorage

I Assumes the storage (e.g. int[16]) does not need to change
⇒ Array size and type of the elements fits the storage

I If so, the Array can be accessed without any synchronization,
in parallel and without any overhead (except the write barrier)
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Migrating to SharedDynamicStorage

I What if we need to change the storage?
$array = [1, 2, 3] # SharedFixedStorage(int[3])
# Migrate to SharedDynamicStorage
$array[1] = Object.new
$array << 4
$array.delete_at(1)

I We use a Guest-Language Safepoint to migrate to
SharedDynamicStorage. Once all threads reach the safepoint,
we change the strategy to SharedDynamicStorage.

Techniques and Applications for Guest-Language Safepoints
B. Daloze, C. Seaton, D. Bonetta, H. Mössenböck, ICOOOLPS 2015.
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SharedDynamicStorage

I SharedDynamicStorage uses a lock to synchronize operations

I To keep scalability when writing on different parts of the
Array, an exclusive lock or a read-write lock is not enough

I We use a Layout Lock
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Layout Lock

I 3 access modes: reads, writes and layout changes (storage
changes, such as int[] to Object[])

I Enables parallel reads and writes

I Layout changes execute exclusively and block reads and writes
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Scalability of Array Reads and Writes
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NAS Parallel Benchmarks
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Conclusion

Single-Threaded Performance and Thread-Safe Objects

Thread-Safe and Scalable Collections

Conclusion
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Challenges and Solutions

I How to provide thread-safety guarantees with no
single-threaded overhead?
I By tracking reachability of objects and collections, and only

synchronize on shared objects and collections

I How to provide efficent and thread-safe objects to which fields
can be added or removed dynamically?
I By extending Self maps with an extra “shared” field and only

synchronizing for shared object writes

I How to provide efficent, thread-safe and scalable versatile
collections?
I By using reachability, a new lock, and dynamically changing

the representation based on which operations are used.
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Limitations and Future Work

I Shared object field writes are serialized on a given object

I Guest-Language Safepoints currently deoptimize and cause
recompilation

I We evaluated for dynamic languages, but some ideas apply to
statically-typed languages too

I Explore if other thread-safety guarantees provided by the GIL
are useful for users
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Conclusion

I Synchronizing dynamically based on reachability is a good way
to avoid overhead on single-threaded performance

I Objects and built-in collections in dynamic languages can be
made thread-safe, efficient and scalable

I We enable parallel programming for dynamic languages, using
the existing objects and built-in collections
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Summary

Tracking reachability Thread-Safe Efficient Object Model

Thread-Safe Scalable Collections Scalable Dynamic Languages
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Scientific Contributions Summary

I Guest-Language Safepoints

I A general approach for efficient synchronization based on
reachability

I A thread-safe and efficient object model for dynamic languages

I A thread-safe and scalable design for collections in dynamic
languages

Together, they enable shared-memory dynamically-typed languages
to run in parallel with thread-safe and efficient data representations
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Scientific Contributions

I A method to automatically detect which objects and
collections to synchronize based on reachability, with the only
overhead being a write barrier on shared objects and collections

I A thread-safe object model for dynamic languages,
synchronizing only on shared objects writes

I A method to gradually synchronize built-in collections in
dynamic languages, achieving scalable and thread-safe access
to these collections

I Guest-Language Safepoints, a synchronization mechanism that
enables interrupting any thread to execute arbitrary code.



Comparison to PyPy-STM (Meier et al., 2018)

This thesis PyPy-STM

Thread-safety guarantees Thread-safe objects and
collections

Sequential consistency

Sequential performance Identical for 1 thread
benchs. 5% geom.avg. on
multithreaded benchs

30% slower than GIL
(geom.avg. of 10 benchs)

Parallel speedup 8x faster on 8 threads
(20x faster on 22 threads)
for PyPy-STM mandelbrot

1.5x - 6.9x (2.46x geom.
avg.) faster on 8 threads
than GIL 1 thread
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Comparison to Ruby-HTM (Odaira et al., 2014)

This thesis Ruby-HTM

Thread-safety guarantees Thread-safe objects and
collections

Sequential consistency

Sequential performance Identical for 1 thread
benchs. 5% geom.avg. on
multithreaded benchs

≥ 25% slower than GIL on
each NPB benchmark

Max parallel speedup on
NPB FT benchmark

9x faster on 12 threads 4.5x faster on 12 threads
than GIL 1 thread
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Thread Safety Requirements (1-4)

Example GIL Goal Unsafe

Initial: array = [0, 0]
array[0] = 1 array[1] = 2
Result: print array

[1, 2] [1, 2] [1, 2]

Initial: array = [0, 0]
array[0] = "s" array[1] = 2
Result: print array

["s", 2] ["s", 2] ["s", 2]
["s", 0]

Initial: array = []
array << 1 array << 2
Result: print array

[1, 2]
[2, 1]

[1, 2]
[2, 1]

[1, 2]
[2, 1]
[1]/[2]
exception

Initial: hash = {}
hash[:a] = 1 hash[:b] = 2
Result: print hash

{a:1, b:2}
{b:2, a:1}

{a:1, b:2}
{b:2, a:1}

{a:1, b:2}
{b:2, a:1}
{a:1}/{b:2}
{a:2}/{b:1}
exception
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Thread Safety Requirements (5-7)

Example GIL Goal Unsafe

Initial: a = [0, 0]; result = -1
a[0] = 1 wait() until a[1] == 2
a[1] = 2 result = a[0]
Result: print result

1 1
0

1
0

key = Object.new; h = {key => 0}
h[key] += 1 h[key] += 1
Result: print h[key]

2
1

2
1

2
1

Initial: array = [1]
array = [2] print array[0]

1
2

1
2

1
2
0
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