
Thread-Safe and Efficient Data Representations in
Dynamically-Typed Languages

Benoit Daloze

Supervisor Prof. Hanspeter Mössenböck
Second Examiner Dr. Jeremy Singer
Third Examiner Prof. Gabriele Anderst-Kotsis
Präses Prof. Armin Biere

15 November 2019



Motivation: Multi-Core Processors

I Single-core performance no longer improves as it used to.

I The main way to achieve higher CPU performance on a single
machine is to use multi-core processors.

2



The Multi-Core Era

Figure: SPECint® results over the years. Source:
https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/

3

https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/


The Multi-Core Era

Figure: SPECint® results until April 2018. Source: https:

//preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/#IDComment1061418665

4

https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/#IDComment1061418665
https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/#IDComment1061418665


Problem Statement

We are in the multi-core era, but:
I Dynamically-typed languages have poor support for parallel

execution (e.g.: Ruby, Python, JavaScript, . . . )

I State-of-the-art implementations either sequentialize execution
or lack basic thread-safety, exposing low-level data races of the
VM to the user

I The biggest reason (my interpretation) is their representation
of objects and built-in collections are not thread-safe

5



Does performance matter in these languages?

I Many server applications written in Ruby, Python, JavaScript,
etc

I They are run in production, and the cost is linked to how
many resources are used (servers, memory, processing power)

6



Dynamic Language Implementations

I Global Lock: CRuby, CPython, PyPy, V8, . . .
⇒ No shared-memory parallelism in a single process

I Fine-grained synchronization: Jython, PyPy-STM, Ruby-HTM
⇒ Significant overhead on single-threaded performance
⇒ Sequentialize all writes to the same object/collection

I Unsafe: JRuby, Rubinius, Nashorn
⇒ Break basic thread-safety like reading/writing to an object
or operations on built-in arrays/dictionaries

7



Dynamic Language Implementations

I Global Lock: CRuby, CPython, PyPy, V8, . . .
⇒ No shared-memory parallelism in a single process

I Fine-grained synchronization: Jython, PyPy-STM, Ruby-HTM
⇒ Significant overhead on single-threaded performance
⇒ Sequentialize all writes to the same object/collection

I Unsafe: JRuby, Rubinius, Nashorn
⇒ Break basic thread-safety like reading/writing to an object
or operations on built-in arrays/dictionaries

7



Dynamic Language Implementations

I Global Lock: CRuby, CPython, PyPy, V8, . . .
⇒ No shared-memory parallelism in a single process

I Fine-grained synchronization: Jython, PyPy-STM, Ruby-HTM
⇒ Significant overhead on single-threaded performance
⇒ Sequentialize all writes to the same object/collection

I Unsafe: JRuby, Rubinius, Nashorn
⇒ Break basic thread-safety like reading/writing to an object
or operations on built-in arrays/dictionaries

7



Appending concurrently

array = []

# Create 100 threads
100.times.map {

Thread.new {
# Append 1000 integers to the array
1000.times { |i|

array << i
}

}
}.each { |thread| thread.join }

puts array.size

8



Appending concurrently

CRuby, the reference implementation with a Global Lock:
ruby append.rb
100000

JRuby, on the JVM with parallel threads:
jruby append.rb
64324

# or
ConcurrencyError: Detected invalid array contents due to

unsynchronized modifications with concurrent users
<< at org/jruby/RubyArray.java:1256

block at append.rb:8

9



Appending concurrently

CRuby, the reference implementation with a Global Lock:
ruby append.rb
100000

JRuby, on the JVM with parallel threads:
jruby append.rb
64324

# or
ConcurrencyError: Detected invalid array contents due to

unsynchronized modifications with concurrent users
<< at org/jruby/RubyArray.java:1256

block at append.rb:8

9



Appending concurrently

CRuby, the reference implementation with a Global Lock:
ruby append.rb
100000

JRuby, on the JVM with parallel threads:
jruby append.rb
64324

# or
ConcurrencyError: Detected invalid array contents due to

unsynchronized modifications with concurrent users
<< at org/jruby/RubyArray.java:1256

block at append.rb:8

9



A workaround

array = []
mutex = Mutex.new

100.times.map {
Thread.new {

1000.times { |i|
# Add user-level synchonization
mutex.synchronize {

array << i
}

}
}

}.each { |thread| thread.join }

puts array.size

10



Summary

State-of-the-art implementations either
I sequentialize important part of the execution or

I violate basic thread-safety guarantees

We need thread-safe and efficient data representations which:
I provide thread-safety guarantees

I have no overhead on single-threaded execution

I enable parallel workloads to scale

11



Challenges

I How to provide thread-safety guarantees with no
single-threaded overhead?

I How to provide efficent and thread-safe objects to which fields
can be added or removed dynamically?

I How to provide efficent, thread-safe and scalable versatile
collections?

12



Scientific Contributions

I A method to automatically detect which objects and
collections to synchronize based on reachability, with the only
overhead being a write barrier on shared objects and collections

I A thread-safe object model for dynamic languages,
synchronizing only on shared objects writes

I A method to gradually synchronize built-in collections in
dynamic languages, achieving scalable and thread-safe access
to these collections

I Guest-Language Safepoints, a synchronization mechanism that
enables interrupting any thread to execute arbitrary code.

13



Supporting Publications

I A Powerful Synchronization Mechanism
Techniques and Applications for Guest-Language Safepoints.
B. Daloze, C. Seaton, D. Bonetta, H. Mössenböck,
ICOOOLPS 2015.

I A Thread-Safe Object Model
Efficient and Thread-Safe Objects for Dynamically-Typed
Languages. B. Daloze, S. Marr, D. Bonetta, H. Mössenböck,
OOPSLA 2016.

I Thread-Safe and Scalable Built-in Collections
Parallelization of Dynamic Languages: Synchronizing Built-in
Collections. B. Daloze, A. Tal, S. Marr, H. Mössenböck, E.
Petrank, OOPSLA 2018.

14



Additional Publications

I Cross-Language Compiler Benchmarking: Are We Fast Yet?
S. Marr, B. Daloze, H. Mössenböck, DLS 2016.

I Few Versatile vs. Many Specialized Collections: How to
Design a Collection Library for Exploratory Programming?
S. Marr, B. Daloze, PX/18.

I Specializing Ropes for Ruby
K. Menard, C. Seaton, B. Daloze, ManLang’18.

15



Outline

Single-Threaded Performance and Thread-Safe Objects

Thread-Safe and Scalable Collections

Conclusion

16



Outline

Single-Threaded Performance and Thread-Safe Objects

Thread-Safe and Scalable Collections

Conclusion

17



Idea: Distinguishing Local and Shared

Idea: Only synchronize objects which need it:

I Objects reachable by only 1 thread need no synchronization

I Objects reachable by multiple threads need synchronization

18



Local and Shared Objects: Reachability

19



Local and Shared Objects: Reachability

20



Local and Shared Objects: Reachability

21



Tracking the set of shared objects

I All globally-reachable objects are shared when a second thread
is created

I Write to shared object =⇒ share value, transitively

# Share 1 Array, 1 Object, 1 Hash and 1 String
shared_obj.field = [Object.new, { "a" => 1 }]

22



No Overhead?

Pseudo code to write a value to a field of an object (obj.x = 42):

void write(Object object, String field, Object value) {
if (isShared(object)) {

// use synchronization
} else {

// direct access
}

}

23



The Truffle Object Storage Model

An Object Storage Model for the Truffle Language Implementation Framework
A. Wöß, C. Wirth, D. Bonetta, C. Seaton, C. Humer & H. Mössenböck, 2014. 24



The Truffle Object Storage Model

An Object Storage Model for the Truffle Language Implementation Framework
A. Wöß, C. Wirth, D. Bonetta, C. Seaton, C. Humer & H. Mössenböck, 2014. 25



Updating an existing field with Shapes

Updating the value of an existing field of an object (obj.x = 42):

void write(Object object, String field, Object value) {
if (object.shape == CACHED_SHAPE) {

object[CACHED_OFFSET] = value;
} else {

transferToInterpreterAndInvalidate(); // deoptimize
CACHED_SHAPE = object.shape;
CACHED_OFFSET = CACHED_SHAPE.getOffset(field);
write(object, field, value);

}
}

26



Tracking Sharing in the Shape

Efficient and Thread-Safe Objects for Dynamically-Typed Languages
B. Daloze, S. Marr, D. Bonetta, H. Mössenböck, OOPSLA 2016.

27



Tracking Sharing in the Shape

Shapes are checked for every field access and method call
⇒ No cost to know if an object is shared

28



Updating an existing field with Shapes

Updating the value of an existing field of an object (obj.x = 42):

void write(Object object, String field, Object value) {
if (object.shape == CACHED_SHAPE) {

if (SHARED_SHAPE) {
// use synchronization

} else {
object[CACHED_OFFSET] = value;

}
} else {

transferToInterpreterAndInvalidate(); // deoptimize
CACHED_SHAPE = object.shape;
CACHED_OFFSET = CACHED_SHAPE.getOffset(field);
SHARED_SHAPE = CACHED_SHAPE.isSharedShape();

}
}

29



Single-Threaded Performance for Objects

Peak performance, normalized to Unsafe, lower is better

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●●●●●●●●●●
●●●

●

●●

●

●

●

●●●

●

●●●●●●

●

●●●●●

●

●●●

●

●

●

●

●
●

●

●
●●●●

●

●●●

●

●

●
●

●

●
●●

●

●

●●●●●
●●●●●●●●●●
●

●

●●●●

●

●●

●●

●●●

●
●

●●
●
●

●●●●●
●
●

●

●

●
●●●●
●

●

●●●
●

●

●

●

●

●
●

●

●

●●
●
●
●
●●●●
●●
●●
●
●●
●
●
● ●

●

●

●●●●
●
●
●

●●

●

●

●
●

●

●

●

●●

●

●
●●●●●
●
●

●

●
●
●

●

●●●●●

●

●●●

●

●●●

●

●●

●

●

●

●
●

●
●
●
●
●

●

●
●
●
●
●
●

●●
●

●

●●

●

●

●

●●

●

●
●●●
●
●

●
●

●

●
●

●

●

●
●●

●

●

●
●

●
●

●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●

●

●
●

●
●
●●●

●

●

●

●●●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●
●●●●●●●●●●●●●●●

●

●●

●

●●●●
●
●

●

●●●●●●●●●●

●

●

●
●
●●●

●

●

●

●●
●
●●

●●●●

●

●●●

●

●
●
●●●●●●●●●●●●●● ●●●●

●

●

●

●

●
●
●

●●

●●●●●●●

●

●
●

●

●

●●

●

●

●

●

●

●●●●●●●●
●
●

●

●●●●●●●●●●●●●

●●
●
●●●●●
●
●
●
●●
●●
●●●●●
●●●

●

●
●

●●

●
●●●●●●●●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●
●
● ●●●

●●

●●●

●
●
●●●●●●●
●
●

●●●

●

●●●●
●
●●●●
●
●●●●
●

●

●

●

●●

●
●●●

●
●
●●●●●●
●
●●●●●●●●●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

0.0

0.5

1.0

1.5

2.0

2.5

Bounce DeltaBlue JSON List NBody Richards Towers

Unsafe Safe All Shared

All Shared synchronizes on all object field writes.

All object-related benchmarks from Cross-Language Compiler Benchmarking:
Are We Fast Yet? S. Marr, B. Daloze, H. Mössenböck, 2016. 30



Extending Sharing to Collections

I We need to synchronize on collections too, e.g., to avoid
append races

I Collections are objects, they can track sharing in the Shape too

I Shared collections use a write barrier when adding an element
to the collection
shared_array[3] = Object.new
shared_hash["foo"] = "bar"

I Collections can change their representation when shared

31



Single-Threaded Performance for Collections

Peak performance, normalized to TruffleRuby, lower is better

0.9

1.0

1.1

1.2

1.3

1.4

Bounce List Mandelbrot NBody Permute Queens Sieve Storage Towers DeltaBlue Json Richards
Benchmark

Ru
n 

Ti
m

e,
 n

or
m

al
iz

ed
 to

Tr
uffl

eR
ub

y 
(lo

we
r i

s 
be

tte
r)

TruffleRuby TruffleRuby with Concurrent Collections

No difference because these benchmarks do not use shared collections.

Benchmarks from Cross-Language Compiler Benchmarking: Are We Fast Yet?
S. Marr, B. Daloze, H. Mössenböck, 2016.

32



Thread-Safe and Scalable Collections

Single-Threaded Performance and Thread-Safe Objects

Thread-Safe and Scalable Collections

Conclusion

33



Focus on Built-in Collections

I Built-in collections are the most used (array/list, map, set)

I Built-in collections are thread-safe with a global lock
⇒ we want to preserve this thread-safety

I User-defined collections are unknown to language
implementations, so they cannot guarantee thread-safety

34



Ruby built-in collections

I Array (a stack, a queue, a deque, set-like operations)

I Hash (compare keys by #hash + #eql? or by identity,
maintains insertion order)

That’s all!

35



Array storage strategies

empty

int[] long[] Object[] double[]

store int store double

store long store Object store Object

store Object

class RubyArray {
// null, int[], long[],
// double[] or Object[]
Object storage;

}

storage:
array = [] # empty
array << 1 # int[]
array << 2**42 # long[]
array << "foo" # Object[]

Storage Strategies for Collections in Dynamically Typed Languages
C.F. Bolz, L. Diekmann & L. Tratt, OOPSLA 2013.

36



Concurrent Array Strategies

SharedFixedStorage

Object[]

SharedFixedStorage

double[]

SharedFixedStorage

long[]

empty

int[] long[] Object[] double[]

st
or

ag
e 

st
ra

te
gi

es
co

nc
ur

re
nt

st
ra

te
gi

es

store int store double

store long store Object store Object

store Object

SharedDynamicStorage

empty

int[] long[] Object[] double[]

SharedFixedStorage

int[]

internal storage change: <<, delete, etc

storage transition
on sharing

SharedFixedStorage

Object[]

SharedFixedStorage

double[]

SharedFixedStorage

long[]

empty

int[] long[] Object[] double[]

st
or

ag
e 

st
ra

te
gi

es
co

nc
ur

re
nt

st
ra

te
gi

es

store int store double

store long store Object store Object

store Object

SharedDynamicStorage

empty

int[] long[] Object[] double[]

SharedFixedStorage

int[]

internal storage change: <<, delete, etc

storage transition
on sharing

37



SharedFixedStorage

I Assumes the storage (e.g. int[16]) does not need to change
⇒ Array size and type of the elements fits the storage

I If so, the Array can be accessed without any synchronization,
in parallel and without any overhead (except the write barrier)

38



Migrating to SharedDynamicStorage

I What if we need to change the storage?
$array = [1, 2, 3] # SharedFixedStorage(int[3])
# Migrate to SharedDynamicStorage
$array[1] = Object.new
$array << 4
$array.delete_at(1)

I We use a Guest-Language Safepoint to migrate to
SharedDynamicStorage. Once all threads reach the safepoint,
we change the strategy to SharedDynamicStorage.

Techniques and Applications for Guest-Language Safepoints
B. Daloze, C. Seaton, D. Bonetta, H. Mössenböck, ICOOOLPS 2015.

39



SharedDynamicStorage

I SharedDynamicStorage uses a lock to synchronize operations

I To keep scalability when writing on different parts of the
Array, an exclusive lock or a read-write lock is not enough

I We use a Layout Lock

40



Layout Lock

I 3 access modes: reads, writes and layout changes (storage
changes, such as int[] to Object[])

I Enables parallel reads and writes

I Layout changes execute exclusively and block reads and writes

41



Scalability of Array Reads and Writes

100% reads 90% reads, 10% writes 50% reads, 50% writes

124 8 12 16 20 24 28 32 36 40 44 124 8 12 16 20 24 28 32 36 40 44 124 8 12 16 20 24 28 32 36 40 44
0

10

20

30

0

10

20

30

0

10

20

30

Threads

B
ill

io
n 

ar
ra

y 
ac

ce
ss

es
 p

er
 s

ec
.

SharedFixedStorage
VolatileFixedStorage

LightweightLayoutLock
LayoutLock

StampedLock
ReentrantLock

Local

100% reads 90% reads, 10% writes 50% reads, 50% writes

124 8 12 16 20 24 28 32 36 40 44 124 8 12 16 20 24 28 32 36 40 44 124 8 12 16 20 24 28 32 36 40 44
0

10

20

30

0

10

20

30

0

10

20

30

Threads

B
ill

io
n 

ar
ra

y 
ac

ce
ss

es
 p

er
 s

ec
.

SharedFixedStorage
VolatileFixedStorage

LightweightLayoutLock
LayoutLock

StampedLock
ReentrantLock

Local

42



NAS Parallel Benchmarks

IS-C LU-W MG-A SP-W

BT-W CG-B EP-B FT-A

12 4 6 8 10 12 14 16 12 4 6 8 10 12 14 16 12 4 6 8 10 12 14 16 12 4 6 8 10 12 14 16

0

5

10

15

0

5

10

15

Threads

Sc
al

ab
ili

ty
 r

el
at

iv
e 

to
 1

 t
hr

ea
d 

pe
rf

or
m

an
ce

Concurrent Strategies TruffleRuby Java Fortran

43



Conclusion

Single-Threaded Performance and Thread-Safe Objects

Thread-Safe and Scalable Collections

Conclusion

44



Challenges and Solutions

I How to provide thread-safety guarantees with no
single-threaded overhead?
I By tracking reachability of objects and collections, and only

synchronize on shared objects and collections

I How to provide efficent and thread-safe objects to which fields
can be added or removed dynamically?
I By extending Self maps with an extra “shared” field and only

synchronizing for shared object writes

I How to provide efficent, thread-safe and scalable versatile
collections?
I By using reachability, a new lock, and dynamically changing

the representation based on which operations are used.

45



Limitations and Future Work

I Shared object field writes are serialized on a given object

I Guest-Language Safepoints currently deoptimize and cause
recompilation

I We evaluated for dynamic languages, but some ideas apply to
statically-typed languages too

I Explore if other thread-safety guarantees provided by the GIL
are useful for users

46



Conclusion

I Synchronizing dynamically based on reachability is a good way
to avoid overhead on single-threaded performance

I Objects and built-in collections in dynamic languages can be
made thread-safe, efficient and scalable

I We enable parallel programming for dynamic languages, using
the existing objects and built-in collections

47



Summary

Tracking reachability Thread-Safe Efficient Object Model

Thread-Safe Scalable Collections Scalable Dynamic Languages

SharedFixedStorage

Object[]

SharedFixedStorage

double[]

SharedFixedStorage

long[]

empty

int[] long[] Object[] double[]

st
or

ag
e 

st
ra

te
gi

es
co

nc
ur

re
nt

st
ra

te
gi

es

store int store double

store long store Object store Object

store Object

SharedDynamicStorage

empty

int[] long[] Object[] double[]

SharedFixedStorage

int[]

internal storage change: <<, delete, etc

storage transition
on sharing

IS-C LU-W MG-A SP-W

BT-W CG-B EP-B FT-A

12 4 6 8 10 12 14 16 12 4 6 8 10 12 14 16 12 4 6 8 10 12 14 16 12 4 6 8 10 12 14 16

0

5

10

15

0

5

10

15

Threads

Sc
al

ab
ili

ty
 r

el
at

iv
e 

to
 1

 t
hr

ea
d 

pe
rf

or
m

an
ce

Concurrent Strategies TruffleRuby Java Fortran

48



Thread-Safe and Efficient Data Representations in
Dynamically-Typed Languages

Benoit Daloze

Supervisor Prof. Hanspeter Mössenböck
Second Examiner Dr. Jeremy Singer
Third Examiner Prof. Gabriele Anderst-Kotsis
Präses Prof. Armin Biere

15 November 2019



Scientific Contributions Summary

I Guest-Language Safepoints

I A general approach for efficient synchronization based on
reachability

I A thread-safe and efficient object model for dynamic languages

I A thread-safe and scalable design for collections in dynamic
languages

Together, they enable shared-memory dynamically-typed languages
to run in parallel with thread-safe and efficient data representations

50



Scientific Contributions

I A method to automatically detect which objects and
collections to synchronize based on reachability, with the only
overhead being a write barrier on shared objects and collections

I A thread-safe object model for dynamic languages,
synchronizing only on shared objects writes

I A method to gradually synchronize built-in collections in
dynamic languages, achieving scalable and thread-safe access
to these collections

I Guest-Language Safepoints, a synchronization mechanism that
enables interrupting any thread to execute arbitrary code.



Comparison to PyPy-STM (Meier et al., 2018)

This thesis PyPy-STM

Thread-safety guarantees Thread-safe objects and
collections

Sequential consistency

Sequential performance Identical for 1 thread
benchs. 5% geom.avg. on
multithreaded benchs

30% slower than GIL
(geom.avg. of 10 benchs)

Parallel speedup 8x faster on 8 threads
(20x faster on 22 threads)
for PyPy-STM mandelbrot

1.5x - 6.9x (2.46x geom.
avg.) faster on 8 threads
than GIL 1 thread

52



Comparison to Ruby-HTM (Odaira et al., 2014)

This thesis Ruby-HTM

Thread-safety guarantees Thread-safe objects and
collections

Sequential consistency

Sequential performance Identical for 1 thread
benchs. 5% geom.avg. on
multithreaded benchs

≥ 25% slower than GIL on
each NPB benchmark

Max parallel speedup on
NPB FT benchmark

9x faster on 12 threads 4.5x faster on 12 threads
than GIL 1 thread

53



Thread Safety Requirements (1-4)

Example GIL Goal Unsafe

Initial: array = [0, 0]
array[0] = 1 array[1] = 2
Result: print array

[1, 2] [1, 2] [1, 2]

Initial: array = [0, 0]
array[0] = "s" array[1] = 2
Result: print array

["s", 2] ["s", 2] ["s", 2]
["s", 0]

Initial: array = []
array << 1 array << 2
Result: print array

[1, 2]
[2, 1]

[1, 2]
[2, 1]

[1, 2]
[2, 1]
[1]/[2]
exception

Initial: hash = {}
hash[:a] = 1 hash[:b] = 2
Result: print hash

{a:1, b:2}
{b:2, a:1}

{a:1, b:2}
{b:2, a:1}

{a:1, b:2}
{b:2, a:1}
{a:1}/{b:2}
{a:2}/{b:1}
exception

54



Thread Safety Requirements (5-7)

Example GIL Goal Unsafe

Initial: a = [0, 0]; result = -1
a[0] = 1 wait() until a[1] == 2
a[1] = 2 result = a[0]
Result: print result

1 1
0

1
0

key = Object.new; h = {key => 0}
h[key] += 1 h[key] += 1
Result: print h[key]

2
1

2
1

2
1

Initial: array = [1]
array = [2] print array[0]

1
2

1
2

1
2
0

55


	Single-Threaded Performance and Thread-Safe Objects
	Thread-Safe and Scalable Collections
	Conclusion

