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ABSTRACT
While an integral part of all programming languages, the design
of collection libraries is rarely studied. This work briefly reviews
the collection libraries of 14 languages to identify possible design
dimensions. Some languages have surprisingly few but versatile
collections, while others have large libraries with many specialized
collections. Based on the identified design dimensions, we argue
that a small collection library with only a sequence, a map, and a
set type are a suitable choice to facilitate exploratory programming.
Such a design minimizes the number of decisions programmers
have to make when dealing with collections, and it improves dis-
coverability of collection operations. We further discuss techniques
that make their implementation practical from a performance per-
spective. Based on these arguments, we conclude that languages
which aim to support exploratory programming should strive for
small and versatile collection libraries.

CCS CONCEPTS
• Software and its engineering→ Data types and structures;
Abstract data types; • General and reference → Surveys and
overviews;

KEYWORDS
Collection Libraries, Design, Implementation, Exploratory Program-
ming

1 COLLECTIONS FOR EXPLORATORY
PROGRAMMING

Collections or containers are part of all general purpose languages.
They are data structures that abstract over the number of data
items and allow operations over the contained items as a whole or
individually.

While being fundamental to most languages, the design of collec-
tion libraries varies greatly. At one end of the spectrum, we have C,
which has only arrays. At the other end, we have for instance Java,
with a standard library that includes dozens of collection abstrac-
tions, and with external libraries to support different programming
styles, application scenarios, or performance requirements.
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To the best of our knowledge, there is no study on how the
design of a collection library influences programmer productivity
or the suitability of a language for exploratory programming.

The goal of this work is to identify the aspects that need to be
considered for the design of collection libraries for exploratory
and live programming. Thus, we reason about the design space
for collections and how different design choices may influence the
programming experience. Our analysis relates these design choices
to the main programming task, performance, and the programming
experience.

To get an overview of the design space, we discuss the high-level
design of collection libraries for C, C++, Go, Java, C#, Scala, Haskell,
Racket, Pharo Smalltalk, Ruby, JavaScript, Python, Dart, and Lua.
From this overview, we extract design dimensions and argue for
specific choices in the context of exploratory programming. We also
review implementation techniques to support the design’s practi-
cality in terms of achieving the same performance as alternative
choices.

While not exhaustive, we hope this analysis provides an insight
into the complex design space of collection libraries and their rela-
tion to the programming experience itself. Our immediate goal was
to better understand the tension between design choices for the
design of a collection library for SOMns, a Newspeak implemen-
tation [5, 24]. Newspeak follows in many ways previous Smalltalk
systems and as such has a large and specialized collection library.
However, based on the arguments presented here, we believe that a
small and versatile librarywould bemore appropriate for a language
that itself is quite suitable for exploratory programming.

2 LIVE AND EXPLORATORY PROGRAMMING
Before diving into the details of designing collection libraries, we
discuss the terms live and exploratory programming to clarify our
assumptions and the context of this analysis.

For the term live programming, we rely on Tanimoto’s notion.
Specifically, we aim to support programming with immediate up-
dates and feedback from the programming environment. This might
be either triggered by edits or presented as continuous event streams,
which corresponds to liveness of level 3 or 4 [37]. While generally
desirable, we forgo considering more advanced liveness levels that
include predictive features, i.e., level 5 and 6 [38].

Based on these liveness level and on the work of others [8, 27, 34],
we expect programming environments and languages to improve
the programming experience by providing immediate feedback on
the validity of programs and code execution. This feedback should
be meant to reduce the friction that is inherent in the communi-
cation between humans and machines, which is constrained by
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artificial languages and machines that still neither perceive the con-
text of a conversation nor learn from interaction. To work around
these limitations, we expect machines to support the communica-
tion with feedback, limited forms of understanding, and a basic
robustness to invalid communication.

Feedback should be provided in form of code completion, contex-
tual documentation, syntax errors, highlighting of possibly invalid
method calls or operations, style violations, and generally undesir-
able patterns. The analyses that enable such feedback need to be
implementable in an efficient manner to give the illusion of instan-
taneous feedback. With limited forms of understanding, we refer
essentially to analyses that allow programmers to be more implicit
than explicit in their programming. One aspect of this is typing.
Languages that use type inference or tool-based feedback seem
to facilitate exploratory programming better than languages that
require us to make such aspect explicit. The overall system should
also be robust with respect to programming errors. Especially errors
in unrelated program parts, or parts that are not executed should
not inhibit our ability to interact with the system, explore, and
extend it.

Generally, when exploring a problem and experimenting with
solutions, we want to focus on the problem domain and prioritize
the core aspects while deferring for instance overall application
performance, handling of exceptional cases, or the completeness
of a solution to a later point. Thus, the programming environment
should not force us to make decisions upfront, for which we do not
understand the problem well enough yet or for which we would
predict highly inaccurately how an algorithm is used in production
scenarios. Types or structural elements often help exploring the
problem and organizing thoughts, but should not prevent or hinder
us from exploring it.

Since collections provide bulk operations and are relevant for
acceptable performance, run-time performance needs to be consid-
ered, even though it is a secondary concern.

3 COLLECTION DESIGN IN THEWILD
Collection libraries are as diverse as languages are different. There
are many design dimensions to consider. Some dimensions are in-
fluenced by the underlying language, its basic abstractions, as well
as what is considered desirable programming style, i.e., idiomatic
code. Other dimensions include the set of offered collection types,
implementation strategies (usually differing in space/time trade-
offs), or general properties such as synchronization, modifiability,
ordering, sorting, and constraints in general. This section briefly
reviews collection libraries of 14 languages to identify the provided
collection types and high-level design differences. The set of ana-
lyzed languages is not exhaustive but includes different types of
languages that are widely used and have been applied to many
application domains.

C11. The C11 standard includes only a single collection type:
arrays. In comparison to other languages, C arrays are merely raw
memory. They neither include a length nor any form of safety
checks, and thus represent the minimal possible abstraction. The
GNU C Library1 expands only minimally on arrays by providing

1The GNU C Library (glibc), GNU Project, https://www.gnu.org/software/libc/manual/

hash table and tree-based operations on arrays for searching and
sorted access.

C++17 and Boost 1.66. C++17 [23] expands on C by providing
a template-based standard library (STL). It includes C arrays but
also an STL version, which can do bounds checking. Additionally,
it includes vectors, deques, singly and doubly linked lists, sets and
maps in an ordered (tree-based) and unordered (hash-based) variant,
as well as adapters to realize stack or queue semantics. Generally,
the STL remains comparably lean, but already provides collections
with different performance tradeoffs that enable programmers to
choose based on their expected usage scenarios.

The Boost C++ libraries2 expand on the STL by adding more spe-
cialized containers, which at least partially address C++-template-
specific issues. The variations on the vector class address different
performance tradeoffs. Overall Boost seems to focus on optimized
collections for specific use cases.

Go 1.9. The Go language3 comes with abstractions for arrays,
lists, rings, maps, and heaps. The library includes only the basic
abstractions needed. For instance, it does not contain a separate set
type, perhaps because it can be easily modeled based on maps.

Java 8, Guava 24, and Eclipse Collections 9.1. In contrast, Java4
has a large collection library. As basic abstraction, the language
includes arrays, which can be of different primitive or object types.
Its standard library provides implementations for a wide variety
of collections including lists, maps, sets, queues, deques, priority
queues, stacks, and iteration abstractions. Many of the collections
come in different variations. For maps and sets, there are hash and
tree-based implementations. Lists are implemented for instance as
linked or array lists, which is then complemented with skip lists,
or copy-on-write lists. Depending on the collection type, there are
also variations that provide ordering guarantees, sorting, make
them navigable, enforce read-only access, reference elements only
weakly, or give guarantees for concurrent accesses. Concurrent
accesses can be synchronized with a basic synchronization wrapper
or by using a specific data structure that might have less synchro-
nization overhead or allows for more parallelism. As a result, the
standard library provides a large number of collection implementa-
tions. While some properties are provided by wrappers and allow
for combination, many collections are separate implementations
tuned for specific use cases.

Guava5 extends the Java collection library with additional utility
methods and adds multi-sets, multi-maps, bidirectional maps, tables,
as well as range sets and maps. Furthermore, it adds immutable
versions of the basic collection. The focus is on more efficient in-
memory representations and improving performance for access
operations compared to Java’s read-only/unmodifiable collection
wrappers.

The Eclipse Collections library6 also extends the Java collection
library. Similarly to Guava, it adds bidirectional maps, multi-maps,
bags, and provide additional utilities. This includes rich support
2Boost C++ Libraries, boost.org, http://www.boost.org/
3The Go Programming Language, Go Project, https://golang.org/
4Java SE 8, Oracle, https://docs.oracle.com/javase/8/
5Guava: Google Core Libraries for Java, Guava Project, https://github.com/google/gu
ava/wiki/NewCollectionTypesExplained
6Eclipse Collections, Eclipse Foundation, https://www.eclipse.org/collections/
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for iteration for instance to iterate lazily or in parallel. It also adds
immutable collections. Additionally, it provides specialized collec-
tion types for primitive types to avoid boxing overhead of Java’s
collection types.

C# and .NET Framework 4.7. Similar to Java, C# and the .NET
Framework7 have arrays, lists, sets, maps, queues, and stacks. While
the framework includes linked and array lists, it does not include ex-
plicit tree sets or maps. However, it also includes sorted collections,
which might be implemented as trees, but the documentation re-
frains from specifying the performance of operations or naming an
implementation technique. Similar to Java, C# provides read-only,
i.e., unmodifiable collections, which are wrappers. Additionally, it
provides immutable collections, which are implemented as persis-
tent data structures, i.e., use structural sharing. For thread-safety,
it offers synchronization wrappers as well as special-purpose con-
current collections with better concurrent behavior. One feature
specific to C# and .NET is the support for query operations on
collections with LINQ [28], which are an addition to the traditional
iteration operations.

Scala 2.12. Scala’s standard library8 supports arrays, maps, sets,
and sequences as basic abstractions. It has hash and tree-based ver-
sions for sets and maps as well as array-based or doubly linked lists
to cover the main implementation strategies. It has special-purpose
collections such as bit sets, list maps, integer maps, linked hash
maps or sets, multi-maps, queues, stacks, vectors, and weak hash
maps. The library offers mutable and immutable versions of most
collections. The immutable collections are typically implemented
as persistent data structures with structural sharing. Both types
of collections are polymorphic on read operations, which makes
them interchangeable for basic accesses. Additionally, the library
provides concurrent, sorted, and parallel versions of some of the
collections. The parallel collections focus on parallel execution of
bulk operations.

Haskell. Haskell offers only immutable lists and tuples as builtin
types. Other collections are provided as external packages. The base
library, which is the standard library for the Glasgow Haskell Com-
piler (GHC) only contains channels, i.e., concurrent queues. The
containers library, the de-facto standard collection library, provides
sequences, maps, graphs, sets, trees, and bit queues. Some of these
are provided as lazy or strict variants. Similarly, it provides special
sets and maps for integers, presumably for performance reasons.

Racket 6.12. Racket9 provides pairs and lists in the Scheme tradi-
tion. In addition, it provides vectors, boxes, hash tables, and sets.
Most collections are available as immutable and mutable variants.
To support concurrency, it provides channels. Buffered channels
are synchronized queues.

Pharo 6. Pharo’s collection library is based on the collection
library of Smalltalk [12, 19]. It includes arrays, maps, sets, bags,
stacks, matrices, and doubly linked lists. Some collections are avail-
able in variants that are ordered, sorted, or based on identity. It also

7 .NET API , Microsoft, https://docs.microsoft.com/en-us/dotnet/api/?view=netframe
work-4.7.1
8Scala Standard Library, EPFL, http://www.scala-lang.org/api/2.12.4/
9The Racket Reference, Racket Project, https://docs.racket-lang.org/reference/

offers arrays of primitive types that store raw values in memory.
Small maps can use classes that are specifically optimized for this
purpose. Similar to other languages, it includes weak collections as
well as a number of queues for concurrent use.

Ruby 2.5. Ruby’s collection library is comparably small. Its main
collection types are arrays and maps. Instead of offering lists, de-
ques, or stacks as separate collections, Array supports the corre-
sponding operations. The Hash map always maintains insertion
order, and can be instructed with compare_by_identity to use
identity of keys. Ruby also provides variable size and bounded
queues for multithreading and a range abstraction. Immutability
of collections is supported by Ruby’s mechanism to freeze objects.
Sorting is not provided as part of separate collection types either.
Instead Hash and Array have a sort method. Ruby’s collections
provide many internal iteration and transformation methods so
that external iteration is rarely used.

JavaScript, ECMAScript 2016. JavaScript’s collection library used
to offer merely arrays and objects, which could be used as maps but
only accept strings as keys. Since this was limiting, newer versions
of the ECMAScript standard introduced maps, sets, and their weak
counter parts. They also introduced typed arrays, i.e., views on raw
memory that allow representing certain number types directly in
memory.

Python 3.6. Python offers lists, immutable tuples, ranges, sets,
and maps as basic collections. Since Python 3.6, dict maintains
insertion order and makes OrderedDict redundant. To provide a
single view on multiple maps, it offers ChainMap. To enable sets of
sets, it includes a frozenset, which has the necessary support for
obtaining a hash value. Priority queues and deques are also provided
in standard modules. Similar to Racket, it provides synchronized
queues for communication between threads. To represent numbers
efficiently, it also supports typed arrays. A special case is here the
bytes type, which is an immutable byte sequence that is used for
instance for byte literals.

Dart 1.24. Dart includes lists, deques, sets, maps and queues in
many variants. Sets and maps are available either using hash ta-
bles, linked hash tables, or splay trees. Similar to other dynamic
languages, Dart also offers lists of primitive types for efficient rep-
resentation in memory.

Lua 5.3. Lua10 is designed as a lightweight language for embed-
ding and scripting. The lightweightness is made explicit also in its
approach to collections. The only abstraction it provides is a table,
which is an associative array, but also used as basic abstraction for
object-oriented programming. Consequently, tables are used for
sequences and maps and have been optimized to fulfill both types
of usages [22].

4 DESIGN DIMENSIONS FOR COLLECTION
LIBRARIES

Based on the observations of section 3, this section distills the
design dimensions for collection libraries.

10Lua 5.3, Lua.org, https://www.lua.org/manual/5.3/

3

https://docs.microsoft.com/en-us/dotnet/api/?view=netframework-4.7.1
https://docs.microsoft.com/en-us/dotnet/api/?view=netframework-4.7.1
http://www.scala-lang.org/api/2.12.4/
https://docs.racket-lang.org/reference/
https://www.lua.org/manual/5.3/


PX/18, April 2018, Nice, France Stefan Marr and Benoit Daloze

4.1 Collection Types
The first dimension is the collection types to be included in the
library. We abstract from general properties of collections (cf. sec-
tion 4.3) and other implementation or representation choices (cf.
section 4.5), which we consider as orthogonal concerns even so it
is not always obviously beneficial.

The first category of collection types is sequences. Considering
mutability, sizing, and representation as orthogonal concerns, this
category includes arrays, lists, vectors, tuples, pairs and boxes.
Generally, these collections provide the ability to store elements
that are possibly repeating and operate on them perhaps by direct
access or via iteration.

The second category is sets. Thus, collections that do not main-
tain repeated elements and only store a single occurrence based on
some equivalence criterion.

The third category is maps, which maintain a mapping from
keys to values. We put bags, i.e., multi-sets, in this category as they
map keys to a number of occurrences. Languages such as Racket
allow polymorphism between indexed sequences and maps (the
key being the index).

The fourth category is stacks and queues. These collections store
elements and restrict the access in a way that facilitates the effi-
cient implementation of certain use cases. We include here deques,
priority queues or heaps, and rings.

The fifth category is composed collections. These are collections
that could be built by combining multiple collections. We include
here for instance matrices, which are two-dimensional arrays, and
tables, which are two-dimensional maps. Again, these two could be
considered of the same class if indexing with integers is considered
an associative access.

The six category is ranged collections, which are rare and appear
for instance in form of range maps or sets.

4.2 Language Style
The second category with a major influence on the collection design
is the language for which the library is designed.

The language style in terms of being procedural, object-oriented,
or functional leads to different designs in shape and structure of
collections as well as the provided sets of operations on them and
the operation naming.

The language’s stance on typing and its support for type pa-
rameters shapes libraries in various ways. In dynamically-typed
languages, we see the need for explicit support of collections for
primitive types, e.g., to store numeric data efficiently. This includes
sequences for numeric elements (e.g. Int32Array in ECMAScript)
or primitive maps or sets (e.g. IntMap in Scala). Typed languages
often use some form of generics, type parameters, or templates,
which help to reduce a proliferation of collections for specific data
types.

In addition to typing, the reusemechanisms offered by a language
have an important impact on library structure. For example, single
inheritance can lead to designs with undesirable properties as seen
in the Smalltalk-80 collection library [12]. While some of these
issue can be worked around, other reuse mechanisms such as traits,
might result in designs that have benefits [3].

In some case, languages evolved to facilitate desired collection
library designs [9, 18]. In other cases, the library needed to evolve
and use the available language mechanisms more effectively to
improve maintainability and code reuse [29].

4.3 Properties
As noted in section 4.1, it is not always clear whether the properties
of collections are orthogonal to the collection type, but they seem
generally useful to be discussed separately.

Basic Properties. For some of the collection types, variants exist
that have a fixed or variable size. For instance, sequences can be
vectors with a variable size, or arrays with a fixed size. Similarly,
queues might use a variable size implementation or a fixed sized to
enforce a bound on the upper queue length.

For many collection types, there are variants that are ordered or
unordered. Lists or other sequences commonly maintain insertion
order, which can be equally beneficial for maps, sets, and other
collection types.

In addition to ordering, collections can sort elements. Some col-
lections such as tree-based collections maintain a sorted order at
all times and provide operations taking advantage of this property.
Other collections might provide an operation to sort elements on
demand.

Mutability. Collections can differ in their mutability and be avail-
able inmutable and immutable versions. Some libraries additionally
provide read-only views in form of wrappers.

Some immutable collections are implemented as persistent data
structures, which use structural sharing to avoid high memory
overhead when producing a new version of a large collection with
only minimal changes.

Special-purpose variations include further copy-on-write data
structures such as Java’s CopyOnWriteArrayList, which can be
used to isolate multiple entities and enable mutability.

Multi-Threading Support. To supportmulti-threaded applications,
libraries can include various collection types. The simplest solution
to ensure correctness is to provide synchronization wrappers as done
by Java and C#. However, this approach is rarely efficient and often
lacks support for performing multiple operations safely together.
These problems are typically addressed by specialized concurrent
collections, which are optimized for specific use cases, leading to a
proliferation of collection types. For instance a queue for a single
producer but multiple consumers can often be implemented more
efficiently than a queue for multiple producers.

For efficient bulk operations, languages such as Scala provide
parallel collections, which execute operations in parallel. Similar to
sorting, where some collections do it intrinsically, parallel execu-
tion is often provided via operations external to the collection (cf.
section 4.4).

Other Properties. Weak collections are commonly offered to build
caches and other data structures that interact well with garbage
collection by enabling reclamation of not otherwise referenced
objects.
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Languages such as Haskell offer the distinction between lazy and
strict collections to provide control over when operations are exe-
cuted. However, this distinction is not exclusive to lazy languages.
In conjunction with iteration, other languages can also offer lazy
execution.

Finally, we found sets and maps that use identity as main distin-
guishing criterion. Presumably, these collections are optimizations
because Java, Smalltalk, and Dart would allow to construct maps
that can be parameterized with appropriate operations for compar-
ison and hashing by identity.

4.4 Operation Design
The design of collection operations depends on the language style
(cf. section 4.2). The style influences naming, which operations are
offered, how bulk operations are realized, or errors are handled. To
give just one example, in Smalltalk it is common to pass closures as
arguments to operations that might fail to provide the failure han-
dling code directly. In other languages, return codes or exceptions
indicate failure and are handled externally to the collection.

There are other previously mentioned aspects that influence
the offered operations including immutability, persistence, sorting,
parallel bulk operations, laziness, iteration in general, and possibly
properties that are realized as some form of opt-in mechanism,
which may include immutability and read-only views.

One important aspect of designing the interfaces of collections
is the intended degree of polymorphism, i.e., whether collections
should offer the same interfaces. To facilitate code reuse, one might
want to design collections with different properties such as being
mutable or immutable so that they can be used mostly interchange-
ably. One way of doing this is by using decorators or wrappers
around collections that add the desired properties, e.g., read-only
views or basic synchronization in Java. Other options to consider
are whether maps should be iterable in the same way as sequences,
or whether sequences can be treated as maps.

Iteration or more general collection traversal is an important
design point. The basic properties ordering and sorting need to
be taken into account. Furthermore, iteration operations need to
consider whether processing is to be done sequentially, in parallel,
or lazily. Languages with slices or ranges can use these as interface
to define how to iterate. Finally, other concepts such as internal vs
external iteration, streams, and language-integrated query (LINQ)
further influence the set of offered operations.

4.5 Algorithms, Data Structures, and
Implementation Choices

The final set of design dimensions are implementation choices,
which include the selection of a specific algorithm or data structure
to realize a collection.

Literature describes a large variety of special-purpose data struc-
tures [6, 21, 33, 35], especially for concurrent applications [17, 20,
25, 32, 36]. However, there seem to be a few favorites that are recur-
ring. For trees we saw for instance red-black trees, tries, and splay
trees, for lists singly and doubly-linked ones, array-based, and skip
lists, possibly with specializations for small or rarely changing lists.
The concrete algorithms for hash tables are not usually specified in
the documentation.

Another important design dimension mentioned before is how
the various properties of collections are represented. Some libraries
provide separate classes for each possible type and property, while
others realize the desired properties with decorators, i.e., wrapper
constructs.

5 COLLECTION USAGE
As seen in the previous section, collection libraries differ widely
in the number of collection types they provide and the properties
these collections can offer. Especially Java provides a multitude of
different collection types and still, the wider community felt the
need to provide and maintain libraries for additional collections.
One important question to guide the design could therefore be:
which collection types are widely used and are likely going to be
needed for exploratory programming tasks?

To answer the question of which collection types are widely
used, Costa et al. [14] studied a GitHub corpus of Java projects [1].
They found that most instantiation sites for collections create
ArrayList objects. From all sites analyzed, 47% used the standard
Java ArrayList. Overall, about 56% used some kind of list. Maps
where used by about 28%, where the great majority uses Java’s
HashMap, which results in a total of about 23% of all allocations.
About 15% all instantiation sites were for some set type. Again,
the large majority was for Java’s HashSet with about 10% of all
allocations.

The only other study on collection usage we are aware of was
included in work by Bergel et al. [2, sec. 9.2]. They observed that
OrderedCollection (similar to ArrayList) and Dictionary (a
map) are the most frequently used collections in some larger Pharo
Smalltalk projects. While the study is less comprehensive than the
Java one, it confirms the general trend. It also considers Smalltalk ar-
rays and finds that they are used slightlymore often than Dictionary.

6 A COLLECTION DESIGN FOR
EXPLORATORY PROGRAMMING

As discussed in section 2, to facilitate exploratory programming
a collection library needs to help programmers to 1) focus on the
problem domain 2) avoid unnecessary decisions and 3) enable the
environment to provide feedback in form of e.g., errors, hints, tool-
ing, and documentation. To us, this means we either want to com-
pletely avoid a choice for or against a specific collection type or
property, or postpone it as far as possible. At the same time, when
we made certain choices, we want them to be reflected by the envi-
ronment. Thus, independently of how these choices are expressed
in code, the environment needs to recognize them to provide us
maximal support. Furthermore, we consider performance in this
context a secondary concern. While important for many applica-
tions, we assume it is rarely the primary concern for exploratory
programming. Consequently, we prefer solutions that can provide
perhaps 80% of a special purpose solution without exposing it to
programmers.

The remainder of this section first discusses the design dimen-
sions identified in section 4 to propose choices that fit our vision
for an exploratory programming setting. Afterwards, we discuss
the resulting overall design, possible criticism, and tradeoffs.

5
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6.1 Identifying a Point in the Design Space
Types of Collections. The first and perhaps most important choice

seems to be the selection of the desired set of collection types. In
section 4.1, we identified six groups. However, considering the
usage in actual applications (cf. section 5), only sequences, sets, and
maps seem to be widely used. To avoid unnecessary decisions, we
propose to use only a minimal set of collection types based on the
most widely used ones, and to provide relevant functionality as part
of these collections. Furthermore, we suggest to design collection
properties in a way that one can easily opt into properties or opt
out from them. However, this should be designed together with tool
support to avoid losing relevant feedback from the environment.
For instance, if a list is used as a stack, the environment should pick
up on it, and adapt code completion accordingly.

It can be debated whether to include sets or not. Sets can be easily
emulated with maps or with set operations on sequences. Since
the use and semantics of sets is distinct enough from sequences
and maps, and the various possible designs of emulating sets have
drawbacks, we would include them directly, even though there are
a number of languages that do not do so.

Similarly, one can argue that maps are merely lists of pairs or
that all sequences should be associative arrays. We agree that it
can be beneficial to threat them as being polymorphic, and Lua
is a great example that shows having only associative arrays (cf.
section 3) is practical. However, we consider the usage of maps
and sequences as sufficiently distinct to warrant the distinction
between them.

Thus, we propose to include sequences, maps, and sets.

Language Style. Generally, we consider the language style as a
given from the host language and thus, it is not part of this discus-
sion. However, aspects such as typing can have a major influence
on the design. For dynamic languages, we observed the inclusion
of specific collection types for primitive data. Since this increases
the number of explicit choices one has to consider, we would argue
that it is better to rely on optimizations at the implementation level
for use cases where performance is the main driver (cf. section 7).

For typed languages, there seems to be a high degree of exposed
complexity for users. For example in Scala, the collection library is
designed so that operations on collections produce output collec-
tions with the same type as the input collection [29]. This leads to
an exposure of highly complex type signatures to the user. Scala
choses to mitigate this by including simplified type signatures in its
documentation. Thus, we advice collection designers to consider
this issue and ensure that tooling and documentation hide such
accidental complexity.

Properties. Because of the various properties collections might
want to support, it seems best to decide on the most flexible default
case and additionally consider mechanisms to opt into or out from
certain properties.

A good example is whether to offer fixed or variable sized col-
lections. Variable sized ones seem to be the most flexible solution.
However, to facilitate the use case and optimizations for fixed-size
collections, it is useful to offer for instance constructors that allow
creating a collection with the desired size and default value. Special

purpose collections such as bounded queues could then be provided
as external libraries.

Similarly, maintaining insertion order for all collections seems
to be a choice that guarantees deterministic behavior and thus is
often preferable. Other orderings could be offered with operations
or iteration constructs. This also means that sorting is arguably
something one wants to opt into, for instance by requesting a
collection to be sorted or using operations that maintain sorting
explicitly.

On the other hand, the choice between having mutable and
immutable collections is likely tightly bound to the language style.
In the interest of maintaining a minimal set of collections only,
deciding on either mutable or immutable seems to be preferable and
avoid confusion and duplication. Similarly, we would relegate read-
only wrappers or copy-on-write collections to external libraries.

Thread-safety is desirable for languages that support sharing
collections between multiple threads. As discussed in section 7,
we think this can be provided implicitly without drawbacks. How-
ever, to provide atomicity of the right granularity, collections need
high-level operations such as computeIfPresent or putIfAbsent,
which typically check some condition on the collection, potentially
perform a user-specified operation, and then modify the collection.

To keep the set of collections minimal, parallel execution of
bulk operations is best introduced by orthogonal means. This could
mean as part of operations for internal traversal or mechanisms for
external traversal, possibly using streams.

Whether to support strict or lazy operations seems to be a ques-
tion of language style and the alternative seems to be a candidate
for external libraries.

Weakly referencing collections have many important applica-
tions, but remain special purpose, thus, should be part of an external
library as well.

Identity-based maps and sets are ideally realized by parame-
terizing the collection. Ideally, it has defaults appropriate for the
language, which can be easily customized.

Operation Design. For a large part, we assume that language style
and type dictate a certain operation style. However, operations on
collections might be especially easy to access for instance with
good code completion. Thus, supporting a wide range of internal
iteration operations seems useful and can support complex queries.
Concepts such as loops or streams for external iteration can still
be beneficial, too. We also argue that these operations are easier
to discover than operations hidden in some complex hierarchy of
special purpose collection classes. Thus, we consider a small set of
collection types with a large number of operations as a choice ben-
eficial for exploratory programming. Furthermore, ensuring a high
degree of polymorphism between collections seems especially desir-
able in the exploratory stage, because it allows switching between
collections or generalizing code without accidental complexity and
technical issues distracting form the problem to be solved.

Algorithms, Data Structures, and Implementation Choices. Hav-
ing to pick any specific algorithm or internal representation of a
collection in the exploratory programming stage seems to be solely
a distraction. While there can be important performance difference,
we would argue that it is better to forgo perfect performance and
instead expect the underlying implementation to be sufficiently
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smart. As argued in section 7, it seems feasible and practical to
make this tradeoff.

6.2 Discussion
Based on the analysis above, we argue that a collection library de-
signed for exploratory programming should have sequences, maps,
and sets as basic abstractions. Relevant properties and modes of
operations for collections should be realized by mechanisms that
allow for an easy opt in, without requiring additional collection
types. In many cases this likely means that the basic collections
have a large and versatile set of operations. We assume this can be
supported by tooling to provide the desired feedback for instance
as part of code completion. However, this also means that many
specialized collections should be relegated into external libraries.
Depending on the language ecosystem, this hopefully implies only
minor inconvenience and is supported by packaging and depen-
dency management systems.

One could now argue that having many different types of opera-
tions on the same collection type violates the good design practice
of having one thing do one thing alone and do it well. One might
even consider such large collection types as an instance of the blob
anti-pattern. [7]

The strongest argument we see is that code interacting with the
collection is not explicit about the desired usage. For instance, a
sequence can be easily used as a stack, queue, deque, or list. Other
arguments, for instance by Peyton Jones [31] include that such
generic types and the lack of specific invariants make it harder
to understand programs, harder to prove properties about them,
and harder to maintain them. However, in our experience, versatile
collections such as JavaScript or Ruby Arrays are in most cases
used with only a few different operations that clearly indicate a
specific “type”. For instance, when push and pop operations are
used on a sequence, it is very clear it is meant to be used as a
stack. Furthermore, we argue that advanced type inference and
run-time feedback can enable development environments to detect
such patterns and provide useful feedback to programmers. For
languages such as Java, it is idiomatic to use the List, Map, or
Set interfaces instead of concrete classes such as ArrayList or
HashMap to facilitate reuse. This illustrates that in many cases the
specific type is less desirable than argued by Peyton Jones [31].
Furthermore, these three interfaces correspond to the collection
types we propose to include.

Furthermore, performance-driven choices are rarely possible in
an informed manner during exploratory programming. Having not
yet fully understood the problem, one would likely mispredict the
distribution of operations at run time. Therefore, specialized classes
are unlikely to be beneficial.

Another argument against versatile collections is that their im-
plementation is much more complex. However, the complexity is
moved into the runtime, and thus benefits many users. At run time,
optimization can become possible without requiring programmer
input, as discussed in the following section. For such optimizations,
a runtime needs to make however many assumptions, which likely
reduces performance predictability. Here we advocate for better
tools. Ideally, the environment can utilize the knowledge about

run-time optimizations to provide users with information on per-
formance issues, which can be considered by programmers at a
point when they start to care about performance.

7 TECHNIQUES FOR EFFICIENT
IMPLEMENTATIONS

Whilewe consider performance a secondary concern for exploratory
programming, good performance is still essential to make a collec-
tion design practical.

With the proposed design, it is likely not possible to achieve
100% of the performance that specialized collections can provide
for specific use cases. However, trading some performance for more
programmer productivity seems beneficial.

The main technique enabling good performance, even when
specialized collection types are not exposed, are to use automatic
data structure selection or adaptive data structures. Peyton Jones
[31, sec. 2.3] and Chuang and Hwang [10] already contemplated
their use. More recently, De Wael et al. [16] experimented with
so-called just-in-time data structures, which allows a data structure
to specialize based on observed usage patterns. Such techniques are
used successfully for collections in dynamic languages. For example,
storage strategies [4, 11] ensure that homogeneous collections use
efficient in-memory representation avoiding boxing without static
types. Statically-typed languages can use mechanisms such as C++
templates to specialize code at compile time.

Xu [39] and Costa and Andrzejak [13] go beyond simply avoid-
ing boxing. They show that collections can be adapted further to
take concrete usage in terms of used operations into account. For
example, if a contains() operation is used frequently on large
lists, it can be beneficial to change its implementation to include
a hash table to speed up the lookup. For languages that prefer im-
mutable collections, there is similar work for instance by Pape et al.
[30], which improves the memory representation of immutable data
structures.

As mentioned in section 6.1, thread-safety is ideally provided im-
plicitly without requiring programmer intervention. Furthermore,
there should not be any cost associated with such thread-safety if a
collection is used only by a single thread. We think this is possible
by combining our techniques for thread-safe object representa-
tions [15] for dynamic languages with storage strategies.

To gain the last bits of performance, one might want to consider
the needs of specialized collections, for instance by ensuring that
operations conform to a common interface. In such cases, the in-
stantiation of a generic collection could simply be replaced with a
specialized one, possibly from an external library. This might even
be facilitated by tooling which determines that a specific sequence
allocation results in objects being always used as a queue. At this
point, a compiler could select a queue implementation. In gradually-
typed languages, this could be further supported by adding types
where performance becomes relevant, which may facilitate the se-
lection of a more efficient implementation when only a subset of
operations is used.

8 RELATEDWORK
While collection design seems to be an integral aspect of language
design, we are not aware of any systematic treatment. While there
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is some work on addressing certain issues [3, 9, 12, 18], there does
not seem to be any general discussion of design tradeoffs. How-
ever, Odersky and Moors [29] describe their experience redesigning
the collection library in Scala. Their focus is mostly on how they
achieved an implementation and design that is more principled,
structured, and avoids code duplication to avoid bit rot during fu-
ture maintenance. Also somewhat related, Matthes and Schmidt
[26] investigate the question of how to design bulk types, i.e., collec-
tion libraries, on the intersection to database systems and database
programming languages. They discuss the benefits and drawbacks
of builtin or library-based designs and favor library-based designs
for their extensibility. For languages, we argue for a small set of
versatile builtin collections that allows extensions from external
libraries.

9 CONCLUSION
This paper informally reviews collection libraries of 14 languages to
identify design dimensions and concerns that impact programming
experience. Based on the identified dimensions and a brief litera-
ture review of collection usage studies, we argue that a small set of
collections with versatile operations is beneficial for exploratory
programming. Specifically, we propose to only offer three collec-
tions, a sequence, a map, and a set. We further argue that these
collections can be implemented efficiently with modern run-time
techniques.

From our perspective, this design facilitates exploratory program-
ming, because it avoids many typical implementation decisions or
relegates them to the runtime. Specifically, it avoids deciding up-
front on a specific collection type or data structure. Consequently,
adapting the usage of a collection, e.g., from a vector to a stack
becomes trivial and does not interrupt the process of understand-
ing the domain problem. Having a large set of operations on a
small set of collections also provides better discoverability, because
specialized operations are not lost in complex hierarchies of collec-
tion types. Thus, the collection library is likely simpler and more
convenient to use.

The drawback is that such collections add complexity to language
implementations, which must provide complex optimizations to
achieve a performance similar to specialized collections. However,
many techniques already exist to optimize these collections and
increasing language implementation complexity for improved pro-
ductivity seems to be an acceptable tradeoff.

Future work should chart the design space for collection libraries
more thoroughly and completely. It would be useful to develop a
common taxonomy for all related concepts because there is rarely
any agreement on naming or semantics between different libraries.
This is only a first snapshot of a small set of languages and libraries.
For example, the ecosystems of Java and C/C++ offer many other
collection libraries, with various tradeoffs. Other types of languages,
such as array programming, scientific computations, or large-scale
parallelism come with their own requirements, which have not
been considered. In this survey we also focused only on the types
of collections without investigating operations on them in any
detail, which should be done in a more detailed study.

Further work should also investigate the human component and
determine whether our design is indeed beneficial for productivity.

Similarly, work on improved collection implementations, a better
understanding of performance tradeoffs, as well as support for feed-
back from development environments is desirable. To provide ap-
propriate feedback, code completion should for instance know how
operations relate to each other. Similarly, run-time visualization
and presentation of collections is essential to understand program
execution. Thus, ways of focusing presentation or customizing it
should be considered.

corollary
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